Arithmetic of weighted Catalan numbers

نویسندگان

چکیده

In this paper, we study arithmetic properties of weighted Catalan numbers. Previously, Postnikov and Sagan found conditions under which the 2-adic valuations numbers are equal to We obtain same result weaker by considering a map from class functions integers. These methods also extended q-weighted numbers, strengthening previous Konvalinka. Finally, prove some results on periodicity modulo an integer apply them specific case number combinatorial types Morse links. Many open questions mentioned.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidences of Catalan and Q-catalan Numbers

Let Cn and Cn(q) be the nth Catalan number and the nth q-Catalan number, respectively. In this paper, we show that the Diophantine equation Cn = Cm(q) has only finitely many integer solutions (m,n, q) with m > 1, n > 1, q > 1. Moreover, they are all effectively computable. – To Professor Carl Pomerance on his 65th birthday

متن کامل

Catalan numbers

Catalan numbers appear in many places throughout mathematics, and are a fairly frequent subject for articles in this magazine. Indeed, a very nice introduction to their properties was given in this magazine by Vun and Belcher [3], and a historical account of their discovery in Chinese mathematics (before Catalan!) has also appeared in a recent article by Larcombe [1]. The article by Vun and Bel...

متن کامل

Parametric Catalan Numbers and Catalan Triangles

Here presented a generalization of Catalan numbers and Catalan triangles associated with two parameters based on the sequence characterization of Bell-type Riordan arrays. Among the generalized Catalan numbers, a class of large generalized Catalan numbers and a class of small generalized Catalan numbers are defined, which can be considered as an extension of large Schröder numbers and small Sch...

متن کامل

Multivariate Fuss-Catalan numbers

are integers that appear in many combinatorial problems. These numbers first arose in the work of Catalan as the number of triangulations of a polygon by mean of nonintersecting diagonals. Stanley [13, 14] maintains a dynamic list of exercises related to Catalan numbers, including (at this date) 127 combinatorial interpretations. Closely related to Catalan numbers are ballot numbers. Their name...

متن کامل

Eulerian-Catalan Numbers

We show that the Eulerian-Catalan numbers enumerate Dyck permutations. We provide two proofs for this fact, the first using the geometry of alcoved polytopes and the second a direct combinatorial proof via an Eulerian-Catalan analogue of the Chung-Feller theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2021

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2021.03.007